0=t^2-6t-18

Simple and best practice solution for 0=t^2-6t-18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=t^2-6t-18 equation:



0=t^2-6t-18
We move all terms to the left:
0-(t^2-6t-18)=0
We add all the numbers together, and all the variables
-(t^2-6t-18)=0
We get rid of parentheses
-t^2+6t+18=0
We add all the numbers together, and all the variables
-1t^2+6t+18=0
a = -1; b = 6; c = +18;
Δ = b2-4ac
Δ = 62-4·(-1)·18
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{3}}{2*-1}=\frac{-6-6\sqrt{3}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{3}}{2*-1}=\frac{-6+6\sqrt{3}}{-2} $

See similar equations:

| 5x÷7=10 | | 346-2r=336 | | (4/z-1)-(2/3)=(2/z+1) | | -10x-100=0 | | 128-2q=122 | | 0=32-4n | | 2(3x^2+4)=19x | | 4x+3-6=21 | | 47-2p=39 | | 562m=50 | | 1.2=5x+3.4 | | 2.2=5x | | 70+2m=78 | | 0=90+30t-5t^2 | | (2x-4)(6+9x)=0 | | 52.4d-26.72=235.63 | | (600/x+5)(x-4)=600 | | 9x-18=6(x-2) | | -3x*2+9=7 | | 9x-18=6(6x+2) | | 25+2z=35 | | x/x+4=4/x+4+2 | | -3x÷9=7 | | F(48)=5t-7 | | 3x*2+9=7 | | F(t)=5t-7 | | X=2x-4÷2+8 | | 2(-3)+3(x-4)=7x-10 | | X=2x-4/2+8 | | 17+2y=23 | | 6x+18x=7936 | | 2y/3-7/12=y/6+5/12 |

Equations solver categories